4/24/2019 ML_face

Important Terms To Know

Before starting a project with visual machine learning or facial recognition it is important to understand the
basics behind how facial recognition & machine learning work.

» Histogram of Oriented Gradients (HOG): When doing facial recongition, this feature descriptior allows for
each image to be simplifed into a single variable. HOG breaks the image into sizes of (width * heigh &
channel (colors)).

ern is pretty similar to this region
our image-we faund a facel

The final vectors are used to compare histograms of images and typically ran through a SVM to produce a non-
linear classification.

.

200+ 8@

« Support Vector Machine (SVM): The classification aglorithm that the most popular image recognition
library dlib uses. SVM is a supervised learning model that can be used for classification and is good for
non-linear classification (which is image machine learning)

» Convolutional Neural Networks (CNN): a classification that takes an input imge and is able to classify it
into certain categories. This model will train and test each input (iamge) into different layers with filters -
returning a single value between 0 and 1 to predict how an item should be classified.

How does CNN Work?

To best understand how a CNN worked, | learned from the article Understanding of Convolutional Neural
Netowrk (CNN) - Deep Learning by Prabhu. (https://medium.com/@RaghavPrabhu/understanding-of-
convolutional-neural-network-cnn-deep-learning-99760835f148
(https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-
99760835f148))

file:///Users/allisonadams/Desktop/ML_face.htm 2/35

https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148

4/24/2019 ML_face

— CAR
— TRUCK
— VAN

= (O

D D — BICYCLE

52
S FULLY
1// INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING \FLATTEN CONNECTED SOFTMAX
FEATURE LEARNING CLASSIFICATION

Steps for CNN Modeling This process can be repeated as many times as is necessary (or set) in the model to
classify images.

1. Input : Provide Image Input to model
2. Convolution: extract the first layer of the image, but preserve the relationship between the pixels. This will
create the first "feature map" for the model.

1/1/1)0|0
Q:D]7:1 1x0 1 0 4
oJof1]1]1
0|0(1(1|0
0|1|1(0]|0
Convolved
Image Feature

3. ReLU: (Rectified Linear Unit for a non-linear operation) introduces non-linarity to the model. The more non
linear the function is, the more complex of a problem it will be able to complete. This activation function
f(x)=max(0,x) helps to increase the speed of training by removing the negative elements and setting them

Project 1: Visual Machine Learning

The first visual machine learning tutorial that | followed was from
https://blog.hyperiondev.com/index.php/2019/02/18/machine-learning/
(https://blog.hyperiondev.com/index.php/2019/02/18/machine-learning/) which takes Google Street House
Numbers from Stanford University to predict the number. The goal of this project is not to hone in on the best
accuracy for the image recongition, but instead to learn the process of image recognition and basic steps for
visual machine learning. All code snippets are directly from this tutorial.

The images are stored in a format that provides a 4D Matrix shape of 32x32x3x73257. This represents 32x32
images, in the RBG (3) format. And then there are 73257 images.

The prediction the algorithm will make is the number presented in the image between 0-9.

file:///Users/allisonadams/Desktop/ML_face.htm

3/35

https://blog.hyperiondev.com/index.php/2019/02/18/machine-learning/
Allison Adams

4/24/2019 ML_face

Set Up Process

To begin we need to make sure that the necessary dependencies are installed including: numpy, scipy and
scikit-learn.

In [3]: 4import scipy.io
import numpy as np
import matplotlib.pyplot as plt

Feature Processing

Next, after dependencies have been installed we can begin to process the features and train the data set. First
we need to load our dataset 'train_32x32.mat'. The .mat extension are typically used in Matlab programs and
are a binary data container. Scipy has a fucntion to load these filetypes just like a cvs which is ".loadmat". Then
we want to split the dataset into X and Y which is already set in the .mat file.

In this preprocessed file for the tutorial the X = 4D matrix of images Y = 1D matrix of labels

so for example, X is going to be the actual image file and the Y will be the number it is trying to predict.

In [4]: | # load our dataset
train data = scipy.io.loadmat('train 32x32.mat')
extract the images and labels from the dictionary object
X = train data['X']
y train data['y']

In [17]: #printing the y, the associated lables
print(y[0])

#printing X the 4D matrix of the images
print (X[0,07])

[1]

[[33 84 19 ... 92 190 216]
[30 76 54 ... 78 188 217]
[38 59 110 ... 101 191 212]]

The 4D matrix doesn't make that much sense in the printed matrix above, so we can print out the image and its
corresponding Y label - by using the plt.imshow function and looking up the image by its index:

for "x" the index is : X[:,:,:,i] and for "y" the index is: y][i]

file:///Users/allisonadams/Desktop/ML_face.htm 4/35

4/24/2019 ML_face

In [6]: | # view an image (e.g. 25) and print its corresponding label
img index = 25
plt.imshow(X[:,:,:,img index])
plt.figure(figsize=(1,1))
plt.show()
print(y[img_index])

10

20

25

[31]

In [7]: | # view an image (e.g. 25) and print its corresponding label
img index = 25
plt.imshow(X[:,:,:,img index])
plt.figure(figsize=(1,1))
plt.show()
print(y[img_index])

10

20

25

[31]

file:///Users/allisonadams/Desktop/ML_face.htm 5/35

4/24/2019 ML_face

Vectorize the images

To perform machine learning, we need to vectorise them. Vectorization means that we will take all the
dimensions we previously mentioned weidth x heigh x color channels (32x32x3) to make a 1D matrix that will be
used as the feature vector.

This tutorial also had the dataste be shuffled to ensure that the data isn't distributed in a particular way in the
way it was saved. This is done in the shuffle(X,y,random_state=42) which will help to eliminate accidental bias
that could impact the results.

In [10]: from sklearn.utils import shuffle
X = X.reshape(X.shape[0]*X.shape[l]*X.shape[2],X.shape[3]).T
y y.reshape(y.shape[0],)
X, y = shuffle(X, y, random state=42)

Machine Learning Algorithms

Now tat we have our X and y into the corrected vector and shuffled we can apply the machine learning
algorithms to the dataeset.

The model we will use is Random Forest Classifier and split our data using rain_test_split from sklearn. We will
set aside 80% of our data to train on.

In [11]: from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier()
print(clf)

RandomForestClassifier (bootstrap=True, class weight=None, criterion='gi
ni',
max_depth=None, max features='auto', max leaf nodes=None,
min impurity decrease=0.0, min impurity split=None,
min_samples_leaf=1, min_samples_split=2,
min weight fraction leaf=0.0, n estimators=10, n_jobs=1,
oob_score=False, random state=None, verbose=0,
warm_start=False)

file:///Users/allisonadams/Desktop/ML_face.htm 6/35

4/24/2019 ML_face

In [15]: from sklearn.model_selection import train test split
X train, X test, y train, y test = train test split(X, y, test size=0.30
, random state=42)
clf.fit(X_train, y_train)

Out[15]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gi

ni',
max_depth=None, max features='auto', max leaf nodes=None,
min impurity decrease=0.0, min_ impurity split=None,
min samples leaf=1, min samples split=2,
min weight fraction leaf=0.0, n estimators=10, n_ jobs=1l,
oob score=False, random state=None, verbose=0,
warm_start=False)

After the clf has trained, we can use the model to predict on the test data we set aside in the previous setp. We
also want to print out the Accuracy for the model.

In [14]: from sklearn.metrics import accuracy score
preds = clf.predict(X test)
print("Accuracy:", accuracy score(y_test,preds))

('Accuracy:', 0.5674310674310674)

Project 2: Facial Recognition

After mastering the basics of visual machine learning, | was interested in exploring facial recognition and the
machine learning that is behind the process. The goal of this project is to allow for my own images to be
recognized and classified.

For this project & learning Facial Recongition machine learning | utilized the tutorials available from
https://github.com/ageitgey/face recognition (https://github.com/ageitgey/face recognition). This
face_recongition library was built using the library dlib
(https://github.com/davisking/dlib/blob/master/examples/dnn_metric learning_ex.cpp
(https://github.com/davisking/dlib/blob/master/examples/dnn_metric learning_ex.cpp)) which utlitizes deep
learning for facial recognition. All code snippets are used directly from this tutorial, with adjustments made
based on file names, configurations or particular display changes.

Installation

The first step is to install all neccesary dependencies and packages:

» download repository https://github.com/ageitgey/face recognition.git
(https://github.com/ageitgey/face recognition.git)
« then run: python setup.py install

(I ran into issues with the install and had to install cmake and dlib separately)

file:///Users/allisonadams/Desktop/ML_face.htm 7/35

https://github.com/ageitgey/face_recognition
https://github.com/davisking/dlib/blob/master/examples/dnn_metric_learning_ex.cpp
https://github.com/ageitgey/face_recognition.git
Allison Adams

4/24/2019 ML_face

Part 1: Recongizing Faces Exist

Before | can predict if a face matches between photos, first | need to understand how the program detects
faces to begin with. This was done through their face_locations function. This uses the hog model explained at
the beginning of this tutorial and will return an array of bounding boxes (outline) of all human faces in the image.

This function face_locations takes the following parameters:

e image

» of of times to upsample (how far into the picture do we want to look? the more times you select this the
longer it will take but is better for images with more people or smaller faces)

« model: what model do you want to use? default is hog

The goal of this step is to not identify who is in the photo but identify how many faces are in the photo. | chose
to use this image since | knew it was high quality photo with the faces clearly defined.

Chosen Photo:

In [5]: | #If this is the first time running the program you will need to run the
following & also git clone the repo
#! pip3 install face recognition
##! pip3 install dlib
#! brew upgrade cmake
#! pip install dlib
#! pip install opencv-python

In [6]: import face_recognition
image = face recognition.load image file("first test image.jpg")
face locations = face recognition.face locations(image)
print (face locations)

[(511, 494, 666, 339), (460, 769, 614, 614)]

file:///Users/allisonadams/Desktop/ML_face.htm

8/35

4/24/2019

ML_face

The above code just prints out the matrix of where the face outlines are, but what if we want to see what faces it
identified? To do this we can use the same plt function as with the house number identification & put in the

resulting image.

In [19]:

import face_recognition

from PIL import Image

image = face recognition.load image file("first test image.jpg")
face locations = face recognition.face locations(image)

print (face locations)
print ("I found {} face(s) in this photograph.".format(len(face locations

)))

for face location in face locations:

Print the location of each face in this image

top, right, bottom, left = face location

print("A face is located at pixel location Top: {}, Left: {}, Botto
m: {}, Right: {}".format(top, left, bottom, right))

You can access the actual face itself like this:
face image = image[top:bottom, left:right]

pil image = Image.fromarray(face image)
pil image.show()

plt.figure(figsize=(1,1))

plt.imshow(pil image)
plt.show()

[(511, 494, 666, 339), (460, 769, 614, 614)]
I found 2 face(s) in this photograph.
A face is located at pixel location Top: 511, Left: 339, Bottom: 666, R

ight: 494
0
100
0 7 100

A face is located at pixel location Top: 460, Left: 614, Bottom: 614, R
ight: 769

file:///Users/allisonadams/Desktop/ML_face.htm

9/35

4/24/2019 ML_face

The function can also identify facial features in the face. To highlight these we can use the function
“face_landmarks” , which will high light the chin, jaw line, nose, eyebrows and eyes.

file:///Users/allisonadams/Desktop/ML_face.htm 10/35

4/24/2019 ML_face

In [25]: | # Find all facial features in all the faces in the image
face landmarks list = face recognition.face landmarks(image)

print("I found {} face(s) in this photograph.".format(len(face landmarks
_list)))

Create a PIL imagedraw object so we can draw on the picture
pil image = Image.fromarray(image)
d = ImageDraw.Draw(pil image)

for face landmarks in face landmarks list:

Print the location of each facial feature in this image
for facial feature in face landmarks.keys():
print("The {} in this face has the following points: {}".format(
facial feature, face landmarks[facial feature]))

Let's trace out each facial feature in the image with a line!
for facial feature in face landmarks.keys():
d.line(face landmarks[facial feature], width=5)

Show the picture

#pil image.show()
pil image = Image.fromarray(face image)
pil image.show()
plt.figure(figsize=(7,7))
plt.imshow(pil image)
plt.show()

file:///Users/allisonadams/Desktop/ML_face.htm 11/35

4/24/2019

ML_face

I found 2 face(s) in this photograph.

The chin in this face has the following points: [(338, 566), (343, 58
5), (349, 604), (354, 623), (365, 639), (383, 652), (402, 662), (424, 6
68), (444, 666), (459, 658), (471, 644), (480, 628), (486, 611), (489,
593), (486, 574), (483, 555), (479, 537)]

The left eyebrow in this face has the following points: [(356, 550), (3
64, 542), (376, 536), (389, 534), (401, 536)]

The right eyebrow in this face has the following points: [(429, 530),
(437, 524), (447, 521), (456, 521), (465, 526)]

The nose bridge in this face has the following points: [(419, 546), (42
2, 559), (426, 572), (429, 584)]

The nose tip in this face has the following points: [(413, 593), (421,
594), (430, 595), (436, 591), (442, 586)]

The left eye in this face has the following points: [(374, 554), (382,
550), (389, 549), (399, 552), (390, 553), (382, 554)]

The right eye in this face has the following points: [(433, 545), (440,
539), (447, 536), (455, 538), (449, 540), (442, 542)]

The top lip in this face has the following points: [(390, 614), (404, 6
07), (419, 604), (430, 603), (441, 599), (453, 596), (464, 597), (460,
599), (442, 603), (431, 607), (420, 607), (394, 614)]

The bottom lip in this face has the following points: [(464, 597), (45
8, 614), (447, 623), (436, 627), (425, 629), (407, 627), (390, 614), (3
94, 614), (423, 622), (434, 621), (445, 617), (460, 599)]

AR S F ERNE T

| ' L

200 1
400 A
600 -
800

1000 {°

file:///Users/allisonadams/Desktop/ML_face.htm

12/35

4/24/2019 ML_face

The chin in this face has the following points: [(604, 525), (610, 54
4), (615, 563), (622, 581), (632, 597), (647, 610), (665, 619), (684, 6
28), (703, 627), (719, 621), (733, 609), (747, 595), (757, 579), (763,
560), (763, 539), (762, 518), (761, 497)]

The left eyebrow in this face has the following points: [(618, 512), (6
22, 498), (633, 490), (647, 487), (662, 488)]

The right eyebrow in this face has the following points: [(692, 483),
(705, 476), (718, 475), (732, 480), (740, 490)]

The nose _bridge in this face has the following points: [(680, 500), (68
3, 512), (685, 525), (688, 538)]

The nose tip in this face has the following points: [(673, 546), (681,
548), (690, 549), (698, 545), (705, 540)]

The left eye in this face has the following points: [(637, 511), (644,
504), (652, 502), (661, 507), (653, 509), (645, 511)]

The right eye in this face has the following points: [(701, 500), (708,
493), (716, 492), (724, 496), (717, 498), (709, 500)]

The top lip in this face has the following points: [(657, 572), (668, 5
63), (681, 560), (692, 559), (702, 557), (715, 555), (727, 560), (723,
560), (703, 560), (693, 562), (682, 563), (661, 571)]

The bottom lip in this face has the following points: [(727, 560), (71
8, 571), (707, 578), (696, 580), (685, 581), (671, 580), (657, 572), (6
61, 571), (683, 575), (694, 575), (705, 572), (723, 560)]

‘T Y T

| ' L

-

200 1
400 A1
600 -
800

1000

0 200 400 600 800 1000

In the spirit of exploration, this tutorial had a fun side project where you could apply "digital makeup" to the
photos. While not directly related to facial recogntion, it was a good exercise in thinking about what this
program is capable of.

file:///Users/allisonadams/Desktop/ML_face.htm 13/35

4/24/2019

In [26]:

ML_face

face landmarks list = face recognition.face landmarks(image)

for face landmarks in face landmarks list:
pil image = Image.fromarray(image)

d

#

0. 0 0

0.

h=5)

oo o ¥

Q. S

= ImageDraw.Draw(pil image, 'RGBA')

Make the eyebrows into a nightmare

.polygon(face landmarks|['left eyebrow'], £ill=(68, 54, 39, 128))
.polygon(face landmarks['right eyebrow'], £fill=(68, 54, 39, 128))
.line(face landmarks['left eyebrow'], f£ill=(68, 54, 39, 150), width

.line(face landmarks['right eyebrow'], £ill=(68, 54, 39, 150), widt

Gloss the lips

.polygon(face landmarks|['top lip'], £ill=(150, 0, 0, 128))
.polygon(face landmarks|['bottom 1lip'], £ill=(150, 0, 0, 128))
.line(face landmarks['top lip'], £ill=(150, 0, 0, 64), width=8)
.line(face landmarks|['bottom lip'], £ill=(150, 0, 0, 64), width=8)

Sparkle the eyes

.polygon(face landmarks|['left eye'], £fill=(255, 255, 255, 30))

d.polygon(face landmarks['right eye'], £fill=(255, 255, 255, 30))

#

d.

Apply some eyeliner
line(face landmarks['left eye'] + [face landmarks|['left eye'][0]],

£i11=(0, 0, 0, 110), width=6)

d.

line(face landmarks['right eye'] + [face landmarks['right eye'][0

11, £ill=(0, 0, 0, 110), width=6)

#pil image.show()
plt.figure(figsize=(7,7))
plt.imshow(pil image)
plt.show()

file:///Users/allisonadams/Desktop/ML_face .htm

14/35

4/24/2019

ML_face

200

400 1

600 1

800 A

1000

200 1

400 1

600 -

800 A

1000

file:///Users/allisonadams/Desktop/ML_face .htm

15/35

4/24/2019 ML_face

Part 2: Identifying Who Is In A Photo

After knowing that | can identify faces with the face_recogintion program, the next step is to add in a layer of
logic that will identify who is in each photo. This next step utilizes a training photo to let the program know who
was who in each photo.

This is done through a three-step process:

1. Load both images, the known image & the unknown image

2. Run each image through the function face_encodings. This function runs through the process explained
about encoding images into their feature files. This is done for both of the images because it is what will be
used to compare the two files.

3. Run each encoding of images through the compare_face function. This function will take both of the
encodings and compares the list of features to determine if it is @ match. This will return the list of true/false
results for the matched pictures. Since this round we are only doing 1 image, we will expect only a single
true or false to be returned. Since it is not two pictures of myself | would expect to have false returned.

The Known Image in this case will be myself:

And the Unknown Image will be my friend Holly:

file:///Users/allisonadams/Desktop/ML_face.htm 16/35

4/24/2019 ML_face

In [29]: known image = face recognition.load image file("Part 2 Images/allison kn
own.png")
unknown_image = face recognition.load_image file("Part 2 Images/holly un
known.png")

allison encoding = face recognition.face encodings(known image)[0]
unknown encoding face recognition.face encodings(unknown image)[0]

results = face recognition.compare faces([allison_ encoding], unknown_enc
oding)
print(results)

[False]

Now lets see what happens if | run the same code against two pictures of myself:

Known Picture:

Unknown Picture (of myself):

Since thse are both pictures of myself, | would expect the result to be true.

file:///Users/allisonadams/Desktop/ML_face.htm 17/35

4/24/2019

In [30]:

ML_face

known image = face recognition.load image file("Part 2 Images/allison kn
own.png")

unknown image = face recognition.load image file("Part 2 Images/allisona
gain.png")

allison encoding = face recognition.face encodings(known image)[0]
unknown encoding face recognition.face encodings(unknown image)[0]

results = face recognition.compare faces([allison_ encoding], unknown_enc
oding)
print(results)

[True]

file:///Users/allisonadams/Desktop/ML_face .htm

18/35

4/24/2019 ML_face

What About More Than 1 Person?

If this works well for one person, and one image, lets see if we are able to expand this to a batch of images.

First, | created a folder that was labeled “known_FirstRound” and included a picture of Dan and myself — clearly
labelled. The program will pull the name from the file in “known” images.

known_FirstRound

:V #V

Il
0
[=][=]
g8
LH
<

Allison.png

Then, | created a folder that included all the pictures | wanted the program to identify. This folder included a
variety of pictures that included pictures of myself and Dan, pictures of myself with another friend, a picture of
just Dan, and two pictures of totally different people. | made sure to label each of the images with who was in
the picture, because the program would return the name of the image & then who was in the image and | would
get instant feedback if the program was correctly identifying the faces.

unknown_firstRound

EBl=oc~= =+ #. 33

[| <E |

J R o\
@ i ‘\0

a and
unknown.jpg

test_allison_dan

unknown.jpg holly.jpg

For this round, | am able to utilize the command line option for the face_recongition because we will not be
adding in any other functionality. This means | can call the comparison by just passing through two parameters
of the folders | created.

In a Jupyter Notebook, you must use ! in front of a command to let the notebook know you want it ran as a
command line prompt (not in python).

file:///Users/allisonadams/Desktop/ML_face.htm 19/35

4/24/2019 ML_face

In [32]: #! face recognition ./known FirstRound ./unknown firstRound

./unknown_ firstRound/unknown.jpg,unknown_ person
./unknown_ firstRound/unknown.jpg,unknown_ person
./unknown firstRound/d4.png,Dan

./unknown_ firstRound/a and unknown.jpg,unknown person
./unknown_ firstRound/a and unknown.jpg,Allison
./unknown_ firstRound/test allison_dan.jpg,Dan
./unknown_ firstRound/test allison dan.jpg,Allison
./unknown firstRound/holly.jpg,unknown person

It correctly identified all the people in the images! For each face in the image, it will return who it is. That is why
for the image test_allison_dan.jpg it returns two lines, one identifying Allison and the other Identifying Dan.

What About My Siblings?

We all look alike; how would that impact the classification? | repeated the same process over with pictures of
my siblings. The folder siblings_known had pictures of each of us.

siblings_known

B=cc - % @ v

Another folder was made was for "unknown images" that had a variety of groupings of my siblings, but also
people who were not any of us in the photos as well.

We can run this code the same away as before, through the command line. For each person in each photo the
classificaiton model will make a prediction (based on the encoded images from the "known_siblings" folder).

file:///Users/allisonadams/Desktop/ML_face.htm 20/35

4/24/2019 ML_face

In [36]: ! face recognition ./siblings known ./siblings_ unknown

./siblings unknown/david.jpg,david
./siblings_unknown/david2.jpg,david

./siblings unknown/unknown4.jpeg,unknown_person
./siblings_unknown/unknonw2.jpeg,unknown_ person
./siblings unknown/Katie val allison.jpg,valerie
./siblings unknown/Katie val allison.jpg,Allison
./siblings_unknown/Katie val allison.jpg,katie
./siblings unknown/Katie val allison.jpg,valerie
./siblings_unknown/Katie val allison.jpg,Allison
./siblings unknown/Katie val allison.jpg,katie
./siblings unknown/Katie val allison.jpg,valerie
./siblings unknown/Katie val allison.jpg,Allison
./siblings unknown/Katie val allison.jpg,katie
./siblings_unknown/val2.jpg,valerie
./siblings_unknown/val2.jpg,Allison
./siblings_unknown/val2.jpg,katie

Each time that it is one of my sisters, it predicts that its each of us - in the group photo of my sisters, it tries to
assign each of us to each person.

To see if we can fix this issue, we are able to change the level of tolerance the program has. This can be done
by adding the parameter of "sensitivity" to the function. It is set at default to be .6, so we will change it to be
.50.

In [38]: ! face recognition --tolerance 0.50 ./siblings_known/ ./siblings_ unknow

n/

./siblings unknown/david.jpg,david

./siblings unknown/david2.jpg,unknown person
./siblings unknown/unknown4.jpeg,unknown_ person
./siblings unknown/unknonw2.jpeg,unknown_person
./siblings unknown/Katie val allison.jpg,valerie
./siblings unknown/Katie val allison.jpg,katie
./siblings_unknown/Katie val allison.jpg,Allison
./siblings unknown/val2.jpg,valerie
./siblings_unknown/val2.jpg,Allison

file:///Users/allisonadams/Desktop/ML_face.htm 21/35

4/24/2019 ML_face

That seemed to do the trick! It still looks like it is struggling to tell my sister Valerie and myself apart, but the
Google photos algorithm also mixes us up from time to time, so | count this as a success! Changing the
tolerance to a lower number makes the algorithm "stricter" which can increase the model, but also could
increase the risk of overtraining the model. The stricter the tolerance, the closer the encodings must be to be
considered a match.

A Look Into CNN

The default model to use is HOG but now we will switch the model to use the CNN model presented in the
beginning of the tutorial. The CNN is more accurate than HOG, but takes considerable more time, which is
important to consideration when building a scalable model.

We can see the differences between these two models by running them sequentially and printing out the face
locations from an image of myself. You can see that the CNN (even if just slightly) has a tighter crop on my face.

file:///Users/allisonadams/Desktop/ML_face.htm 22/35

4/24/2019 ML_face

In [55]: import face_recognition
from PIL import Image

image = face recognition.load image file("Allison CNN.jpg")
face locations = face recognition.face locations(image, model="hog")

print (face locations, "HOG Default Round")

for face location in face locations:

Print the location of each face in this image
top, right, bottom, left = face location

You can access the actual face itself like this:
face image = image[top:bottom, left:right]

pil image = Image.fromarray(face image)
pil image.show()

plt.figure(figsize=(3,3))

plt.imshow(pil image)
plt.show()

face locations = face recognition.face locations(image, model="cnn")
print face locations

print (face locations, " CNN Round")

for face location in face locations:

Print the location of each face in this image
top, right, bottom, left = face location

You can access the actual face itself like this:
face image = image[top:bottom, left:right]

pil image = Image.fromarray(face image)
pil image.show()

plt.figure(figsize=(3,3))

plt.imshow(pil image)
plt.show()

file:///Users/allisonadams/Desktop/ML_face.htm 23/35

4/24/2019 ML_face

[(415, 489, 638, 266)] HOG Default Round

50 100 150 200

[(393, 470, 597, 266)] CNN Round

file:///Users/allisonadams/Desktop/ML_face .htm

24/35

4/24/2019 ML_face

Using KNN to Make Predictions

Now that | have understood how the base HOG model works through the command line, | took a deeper look
into different models that can be used for image recognition. The supervised learning KNN (K nearest neighbor)
is a classification model that can be used to run the model on a large group of known people — and then run the
model against a large group of unknown images.

The model will be trained on a “train” directory that includes labeled faces of an individual in specific folders.
This is much like in the first example where we created a “known_person” folder, but on a larger scale. The
program assumes that all photos within the train_dir are of the same person and will be labelled by the folder
name. The algorithm will then be ran on the test folder and find the images with the “k” closest facial features
based on the encodings of the images. This particular KNN is weighted, so the closer the neighbor the most
weight that “vote” will get.

v test
E aa
M a5
@l allison.jpg
BE group.jpg
il group2.jpg
Hha
& h5.jpg
¥ k4.png
¥ K5.jpg
B 14.jpg
= 15.jpg
ms unknonwl.jpeg
1 unknonw?2.jpeg
@ unknown4.jpeg
A unknown5.jpeg
3 unknwn3.jpeg
v train_dir
v Allison
B a
B a2
B a3
> Holly
> Kristen
> Laura

| ran this program with training the program on 4 people, Allison, Holly, Kristen and Laura. | included 3 images
for each person in the training directory. Then in the test directory | included a variety of images, some groups of
us together, some individual shots and 5 pictures of unknown people altogether from stockphotos.com.

This program came with safeguards for if an image doesn’t have an identifiable face, or if it’s not suitable for
training it will throw and error instead of reducing the accuracy of the model and keeping the image in the
training set. This is done through the face_locations count, and if its less than 1 then that photo will be rejected.

The program is done in three steps:

1. Train the KNN classifier and save it to the disk. Saving it to a variable means that if this program was to be
used multiple times over, it was the option to reuse the KNN classifier, saving time in the future.

2. With the classifier saved, we can now pass in the test directory and the model will predict for the unknown
images.

3. Print out the results — Since the model does not know if the image its identifying is correct — it will print out
the names of who is in the image as well as print the results on an overlaid image. This is done by
concatenating the image name and prediction onto the image.

file:///Users/allisonadams/Desktop/ML_face.htm 25/35

4/24/2019 ML_face

file:///Users/allisonadams/Desktop/ML_face.htm 26/35

4/24/2019 ML_face
In [] import math

from sklearn import neighbors

import os

import os.path

import pickle

from PIL import Image, ImageDraw, ImageFont

import face_recognition

from face_recognition.face_recognition_cli import image files in folder

import csv

ALLOWED_ EXTENSIONS = {'png', 'jpg', 'jpeg'}

def train(train dir, model save path=None, n neighbors=None, knn algo='b
all tree', verbose=False):

X =11
y =[]

Loop through each person in the training set
for class_dir in os.listdir(train_dir):
if not os.path.isdir(os.path.join(train dir, class _dir)):
continue

Loop through each training image for the current person
for img path in image files in folder(os.path.join(train dir, cl
ass_dir)):
image = face recognition.load image file(img path)
face bounding boxes = face recognition.face locations(image)

if len(face bounding boxes) != 1:
If there are no people (or too many people) in a train
ing image, skip the image.
if verbose:
print("Image {} not suitable for training: {}".forma
t(img path, "Didn't find a face" if len(face bounding boxes) < 1 else "F
ound more than one face"))
else:
Add face encoding for current image to the training se
t
X.append(face recognition.face encodings(image, known fa
ce locations=face bounding boxes)[0])
y.append(class dir)

Determine how many neighbors to use for weighting in the KNN class
ifier
if n neighbors is None:
n_neighbors = int(round(math.sqgrt(len(X))))
if verbose:
print("Chose n neighbors automatically:", n neighbors)

Create and train the KNN classifier

knn clf = neighbors.KNeighborsClassifier(n neighbors=n_ neighbors, al
gorithm=knn algo, weights='distance')

knn clf.fit(X, y)

Save the trained KNN classifier

file:///Users/allisonadams/Desktop/ML_face.htm 27/35

4/24/2019

ML_face

if model_ save path is not None:
with open(model save path, 'wb') as f:
pickle.dump(knn clf, f)

return knn clf

def predict(X_img path, knn clf=None, model path=None, distance_ threshol
d=0.6):

mon

Recognizes faces in given image using a trained KNN classifier

:param X img path: path to image to be recognized
:param knn clf: (optional) a knn classifier object. if not specifie
d, model save path must be specified.
:param model path: (optional) path to a pickled knn classifier. if n
ot specified, model save path must be knn clf.
:param distance threshold: (optional) distance threshold for face cl
assification. the larger it is, the more chance
of mis-classifying an unknown person as a known one.
:return: a list of names and face locations for the recognized faces
in the image: [(name, bounding box), ...].
For faces of unrecognized persons, the name 'unknown' will be re
turned.
if not os.path.isfile(X img path) or os.path.splitext(X img path)[1]
[1:] not in ALLOWED EXTENSIONS:
raise Exception("Invalid image path: {}".format(X img path))

if knn_clf is None and model path is None:
raise Exception("Must supply knn classifier either thourgh knn c
1f or model path")

Load a trained KNN model (if one was passed in)
if knn_clf is None:
with open(model path, 'rb') as f:
knn clf = pickle.load(f)

Load image file and find face locations
X img = face recognition.load image file(X img path)
X face locations = face recognition.face locations (X img)

If no faces are found in the image, return an empty result.
if len(X face locations) == 0:
return []

Find encodings for faces in the test iamge
faces _encodings = face recognition.face encodings(X img, known face_
locations=X face locations)

Use the KNN model to find the best matches for the test face

closest distances = knn clf.kneighbors(faces encodings, n_neighbors=
1)

are matches = [closest distances[0][i][0] <= distance_ threshold for
i in range(len(X face locations))]

Predict classes and remove classifications that aren't within the

file:///Users/allisonadams/Desktop/ML_face .htm

28/35

4/24/2019

ML_face

threshold

return [(pred, loc) if rec else ("unknown", loc) for pred, loc, rec

in zip(knn clf.predict(faces encodings), X face locations, are matches)]

def show prediction labels on image(img path, predictions):

2))

m)),

Shows the face recognition results visually.
:param img path: path to image to be recognized
:param predictions: results of the predict function

:return:

pil image = Image.open(img path).convert("RGB")

= ImageDraw.Draw(pil image)

for name, (top, right, bottom, left) in predictions:

Draw a box around the face using the Pillow module
draw.rectangle(((left, top), (right, bottom)), outline=(0, 0, 25

There's a bug in Pillow where it blows up with non-UTF-8 text
when using the default bitmap font
use a bitmap font

font = ImageFont.truetype('Pixell2x10.ttf', 40)

font ImageFont.truetype("/Library/Fonts/Tahoma Bold.ttf",48)
name = name.encode("UTF-8")

#print (name)

Draw a label with a name below the face

name2= str(name)

text width, text height = draw.textsize(name)
draw.rectangle(((left, bottom - text height - 10), (right, botto

fill=(0, 0, 255), outline=(0, 0, 255))
draw.text((left + 6, bottom - text height - 5), name,fill=(255,

255, 255, 255))

t)

if name == " main ":
STEP 1: Train the KNN classifier and save it to disk
Once the model is trained and saved, you can skip this step next t

ime.

draw.text((left + 6, bottom - text height - 5), name, font=fon

draw.text((left + 6, bottom - text height - 5), name2, font=font

Remove the drawing library from memory as per the Pillow docs
del draw

Display the resulting image
#pil image.show()
plt.figure(figsize=(10,10))

plt.imshow(pil image)
plt.show()

" n

file:///Users/allisonadams/Desktop/ML_face .htm

29/35

4/24/2019

ML_face

print("Training KNN classifier...")

classifier = train("knn examples/train", model save path="trained kn
n_model.clf", n neighbors=2)

print("Training complete!")

STEP 2: Using the trained classifier, make predictions for unknown
images
for image file in os.listdir("knn examples/testing"):
full file path = os.path.join("knn examples/testing", image file

print("Looking for faces in {}".format(image file))

Find all people in the image using a trained classifier model

Note: You can pass in either a classifier file name or a class
ifier model instance

predictions = predict(full file path, model path="trained knn mo
del.clf")

Print results on the console
for name, (top, right, bottom, left) in predictions:
print("- Found {} at ({}, {})".format(name, left, top))

Display results overlaid on an image
show prediction labels on image(os.path.join("knn examples/testi
ng", image file), predictions)

Ages - can it predict one person throughout the years?

With and Without Glasses Does people wearing glasses or sunglasses

does changing the training data you give the model have an impact (age, glasses)how much can you throw in
baby pictures of me? How much does it differ?

could it predict the Age of the person? make training folders of people at different ages

file:///Users/allisonadams/Desktop/ML_face .htm

30/35

4/24/2019 ML_face

Introducing Age

What would happen if we introduce age into the alogrithm, would it be able to predict the correct person? Using
my little sister as an example (with lots of digital photos available) We will look at the face recognition program
traning on a current photo and including her photo at different ages.

The training photo that we used is her from last year:

file:///Users/allisonadams/Desktop/ML_face.htm 31/35

4/24/2019 ML_face

In [2]: ! face recognition ./val known ./val unknown

./val unknown/V_2012.jpg,val
./val_unknown/v_2006.JPG,val
./val_unknown/v_2004.JPG,val

./val unknown/V_2011.jpg,val
./val_unknown/v_2001.JPG,val
./val_unknown/v_2003_1.JPG,val
./val_unknown/v_2004_1.JPG,unknown_person
./val unknown/v 2004 1.JPG,val

./val unknown/vV-2018.jpg,val

./val _unknown/v_2004_ 2.JPG,val

./val unknown/valerie.jpg,val

./val unknown/random 3.jpeg,val
./val_unknown/v_009.JPG,val

./val unknown/random 4.jpeg,unknown_ person
./val unknown/random 5.jpg,unknown person
./val unknown/vV-2015-2.JPG,val

./val unknown/v_2018.jpg,val
./val_unknown/v_2008.JPG,val

./val unknown/random 2.jpg,unknown person
./val unknown/v 2009 1.JPG,val

./val unknown/random 1l.jpg,unknown person

It was able to identify her if | used her most recent photo first, but what happens if | use her baby photo
as the training image?

Training Image:

file:///Users/allisonadams/Desktop/ML_face.htm 32/35

4/24/2019 ML_face

In [3]: ! face recognition ./val known baby ./val unknown grownup

./val unknown grownup/V_2012.7jpg,unknown_ person
./val unknown grownup/v_2006.JPG,val
./val_unknown grownup/v_2004.JPG,val
./val_unknown grownup/V_2011l.jpg,val
./val_unknown_grownup/v_2001.JPG,val
./val_unknown_ grownup/v_2003_1.JPG,val
./val_unknown_ grownup/v_2004_ 1.JPG,unknown_ person
./val unknown grownup/v_2004 1.JPG,val
./val_unknown grownup/V-2018.jpg,val
./val_unknown grownup/v_2004 2.JPG,val

./val unknown grownup/valerie.jpg,val

./val unknown grownup/random 3.jpeg,val

./val unknown grownup/v_009.JPG,val

./val unknown grownup/random 4.Jjpeg,val

./val _unknown grownup/random 5.7jpg,unknown_person
./val unknown grownup/V-2015-2.JPG,unknown_person
./val _unknown grownup/v_2018.7jpg,unknown_ person
./val_unknown_ grownup/v_2008.JPG,unknown_person
./val unknown grownup/random 2.jpg,val

./val unknown grownup/v_ 2009 1.JPG,val

./val _unknown grownup/random 1.3jpg,unknown_person

file:///Users/allisonadams/Desktop/ML_face.htm 33/35

4/24/2019 ML_face

It was still able to identify a lot of the images but struggled with more than when given the most recent
image. Looks like this round it struggled with more recent pictures:

If you are going to do facial recongition with a variety of images that include different ages, the most succesful
option is to use a more recent photo.

file:///Users/allisonadams/Desktop/ML_face.htm 34/35

